Skip to content

Posts tagged ‘定义’

14
Apr

对于教材写法的一点考虑

有感于Matrix67神牛的这篇文章(强烈建议大家去读一读),我也发表一下自己对于教材编写的一点看法。

1.对线性代数的吐槽

(没学过线性代数的同学请忽略下面3段往后接着看。)

我一直觉得线性代数用那种严格公理化的语言写成课本根本不适合初学者学习,一开始学习线性代数的时候,我本人对很多概念的直观意义根本就是完全不知道。我们的课本是丘维声的《简明线性代数》,我在此毫不掩饰的表示对这本教材的鄙视:这本教材居然是按照这样的顺序讲线性代数的:线性方程组->行列式->线性方程组的进一步讨论->矩阵的运算->一大堆东西->线性空间->线性映射->一大堆东西。这个狗屁顺序直接导致我前半个学期一直以为线性代数就是研究怎么解线性方程组的,我心想,这么简单的问题,具体问题谁都会解,值得这么大动干戈的定义出这么大堆东西么。。。一直到线性空间那一个章节以前,我完全就不知道线性代数整个是在干什么..后来学的多了我才知道,其实线性代数就是研究线性空间和线性映射的嘛,什么线性方程组,根本没那么重要。一个更加合理的顺序是:先讲线性空间、线性映射,其中明确说明矩阵就是线性映射,然后再讲行列式,然后线性方程组只作为一个例子出现就可以了。

然后在说说那个不靠谱的行列式。。我就不明白,国内的教材是基于怎样一种考虑,居然把行列式放在矩阵前面讲,放在线性映射前面讲。?于是就导致行列式的定义居然诡异的用到了逆序对,一上来就来这么个定义我们怎么可能明白行列式到底是个什么东西,它是干什么的?!还有矩阵的概念,我们的课本引入矩阵是从线性方程组引入的,于是让我在前半学期里面就仅仅以为矩阵就是一堆排成了方阵的数而已。。。于是我就死活不能理解,为什么矩阵之间还能引入乘法,乘法的定义还能那么诡异?!非要等到后面学到了线性映射,我们老师才终于跟我们讲清楚了:原来矩阵就是用来表示线性映射的嘛。。矩阵相乘就是表示先后做两个线性映射嘛,之所以那么定义矩阵乘法,就是因为这样定义了之后,乘得的新矩阵确实能够等价的表示先后做两次线性映射。。。但是行列式到底是什么,课本根本就到最后都没有说清楚。还是Matrix67文章里的一句话道清了本质:“其实,行列式的真正定义就一句话:每个单位正方形在线性变换之后的面积”。为什么所有的教材里就不能把这样一句话放在教材里呢?!

还有很多概念都没有讲清楚它们的直观意义到底是什么。有许许多多学经济或者学其他学科的同学,可能学完了整个线性代数也不明白,算特征值和特征向量到底是干什么的,为什么要研究这么诡异的问题。如果不是我们老师上课讲道它在量子力学里会体现出无穷重要的价值,我单看课本肯定不明白这是在干什么。特征值其实就是量子力学里的算符对应的可观测物理量(这点可能不学量子力学很难理解)。还有就是迹(trace)的概念,我至今没有搞清楚为什么要定义这么一个量,我根本就不知道它表示了什么。于是我就既记不住它的各种性质,也不知道我到底在何种物理问题里会用到迹这个诡异概念。你说我都完全不理解到这个地步了,学这个概念还有什么用?不光是我一个人的问题,我问了问身边的人,他们同样回答不出来迹是个什么。

国内好多同学应该都会对此有共鸣,因为我们国内的教材都是这样对概念只下严格数学定义,而基本上不作直观解释的,于是就导致很多很多人学完了线性代数都不知道自己学了些什么。理解数学概念的直观图像,其作用不仅仅是能够帮助记忆那些概念的性质,甚至可以帮助捋出证明思路,甚至都可以帮助数学家发明新的数学。可是现有的课本就是讲不清楚直观解释!

2.对理论力学的吐槽

Read moreRead more

30
Mar

什么是直线?

什么是直线?或者更加准确的问法是如何定义直线?不知道你有没有思考过这个问题。尽管我们实际生活中都有对直线概念的直观理解,但是考虑到后来非欧几何的问世,我们理应对直线有一个更深刻的认识。

欧几里得的几何原本上是这么定义直线的:“直线是它上面的点一样地平放着的线”,其中线的定义是“线只有长度而没有宽度”。显然在逻辑上这样的定义是极其不严格的,因为什么叫做“一样的平放着”只是一个日常生活中的直观概念。这也就是说欧几里得的几何原本相当于并没有对直线给出定义,尽管直线是几何学最基本的基本概念之一。

可能很多人会认为直线被定义成“两点间最短的线”(在这里就不去区分线段和直线了),然后就觉得在逻辑上就已经定义清楚了。但是这里还有一个问题,那就是什么叫做短?要有长短的概念就要先有距离的概念,而仅仅在几何学内考虑这个问题的话,要丈量距离就必须先有尺,而尺的形状又是直的,因此距离的概念其实是建立在直线的概念之上的。所以如果只考虑几何学那么用距离定义直线就成了循环定义了。

所以在数学上,我们就不能单从几何的角度去定义距离了。为了定义距离,我们需要在空间的每一个无穷小的区域上建立一个笛卡尔坐标系,在每一个小的笛卡尔坐标系内部可以通过普通的解析几何的方法定义出距离,然后在整个路径上对每一个小段上的距离进行叠加,从而定义出两点间连线的距离。之所以能在无穷小区域上建立笛卡尔坐标系,是因为一条曲线在无穷小区域上,我们可以把它近似为一小段直线(这个直线就是我们通常直观认识的直线),这个思想其实在最基础的微积分里面就已经有了。(如果一个空间奇异到在无穷小区域上无法建立笛卡尔坐标系,那么一般我们就不去研究它了。)至于为什么不能直接在大区域上直接建立笛卡尔坐标系来定义距离,原因很简单,坐标轴要画成直线啊,在没有直线概念的时候又哪里来的坐标轴呢...一个能够帮助理解的简单例子是在球面上定义最短线,如果直接建立笛卡尔坐标,其中的坐标轴就用我们直观感受的那种直线的话,那么最短线是必须脱离球面而经过球面之外的空间的。但是在球的表面的每一个无穷小区域上建立微小笛卡尔坐标系,就可以很好的沿着球表面定义出一条最短线。

至此,我们基本上可以把直线就定义成两点间距离最短的线了。但是,一定要知道一点,如此定义并没有定义出唯一一种直线。显然在一个球面上定义出的最短线,在我们看来其实是圆弧;在马鞍面上画出的最短线,在我们看来也是弯弯曲曲的线...他们都属于非欧几何。庞加莱圆盘模型(参见这篇文章)就是非欧几何的一种,按照那里定义的距离,圆盘模型内的直线在我们看来就成了圆弧了。

那么怎么定义才能保证刚才定义出来的直线就是我们通常直观上的直线呢?其实很简单,只要再加上一个公理,即传说中的欧几里得第五公设就可以实现:同一平面内一条线段和另外两条线段相交,若在某一侧的两个内角的和小于两直角,则这两线段经充分延长后在这一侧相交。非欧几何正是做出了与第五公设相反的假设而得名的,给出不同的公理,就会得出各种各样的非欧几何。

至此,我们终于可以引入Hilbert大神对直线的理解了: Read moreRead more

12
Jul

圆的弦比内接正三角形之边大的概率是多少?

贝特朗悖论圆的弦比内接正三角形之边大的概率是多少?

偶然间从庞加莱(Poincaré)(又被翻译成彭加勒)的《科学与假设》的概率演算这一章看到了这个命题,他最早由贝特朗提出,故又叫做贝特朗悖论。这一问题有三种解答,答案分别是1/2、1/3和1/4,我怎么也想不清楚到底哪一种是对的,其他的为什么错了,请路过的大牛们帮忙看一看。

解法一:由于对称性,可预先指定弦的方向。作垂直于此方向的直径,只有交直径于1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长。所有交点是等可能的,则所求概率为1/2 。

解法二:由于对称性,可预先固定弦的一端。仅当弦与过此端点的切线的交角在60°~ 120° 之间,其长才合乎要求。所有方向是等可能的,则所求概率为1/3 。

解法三:弦被其中点位置唯一确定。只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求。中点位置都是等可能的,则所求概率为1/4。

这个问题的答案到底应该是多少呢?

顺便说一下,《科学与假设》里有一个观点我很认同,他觉得古典概型中概率的定义不严谨。定义:“若只有有限个不同的基本事件,且每个基本事件发生的可能性是均等的,则事件A的概率等于事件A包含的基本事件数除以基本事件总数。”可是,定义中出现的“可能性是均等的”如何判断?这是不是用概率来定义概率了?这样的定义不算循环定义么?

注:文中的三种解法及图片来自百度百科

22
Apr

用逻辑学规范物理学(二)

质量的定义是什么?力的定义是什么?能量的定义又是什么?

这些理应都是物理学中的基础概念,可是,在任何一本基础的物理书中都找不到他们的定义,悲夫!今天我们就来探讨一下这三个问题吧!

初中和高中物理书上都把物体所含有的物质的多少叫做质量,这是一种非常不严谨的解释。我初中刚学到这个概念时,就对此产生了巨大的疑问。按照这个定义,光是一种物体吧,它含有物质(按哲学中的定义,物质是独立于意识之外而存在的一切),可是它却没有静止质量(即固有质量)。光只携带能量,而没有可观测的固有质量。就算光是一个极端的前沿的中学生研究不了的例子,那么我也可以从磁场下手。磁场是物质,可是从来没有谁说过磁场有质量。所以,显然把质量定义成物体所含有的物质的多少是站不住脚的。

那么质量应该如何定义呢?按照上一回所说的概念的定义方式,我们必须找到质量的本质属性。通过查阅大量资料我获悉,质量有两个本质属性:惯性的量度和引力的量度。因此也就有了很古老的惯性质量和引力质量一说。无数精确的实验表明,惯性质量和引力质量是等价的,所以我们可以认为惯性质量和引力质量只是质量的两个不同表现形式。那么惯性的定义,就可以从其中任何一个本质属性下手。根据习惯,人们把质量定义为“反映惯性大小的系数”。 Read moreRead more

15
Apr

用逻辑学规范物理学(一)

最近因为看的物理方面的书比较多,就越来越感到有一些事情是不好的。我觉得现行的中学物理教材行文大约是按照当年物理学的发展史来的,而不是严谨的由公理推定理,通过严格的假设、推理、演绎以及归纳导出整个物理学。而且,至今我看过的所有读物都没有这样一个严谨的过程。现在,我们学生甚至得不到像质量、力这样的概念的准确定义,实在是可悲!(课本上说质量是物体所含物质的多少,纯粹就是种糊弄,根本不是定义,也不是质量的本质属性;说力是物体对物体的互相作用,这也只是一个诠释而非标准定义。)因此,我觉得我应该自己尝试着把牛顿力学通过这样一种方式使其严谨起来。而最近看的《科学与假设》(彭加勒著),更加使我坚定了这个信念。我不求得到世人的认可,只求自己看起来舒服。为此这几天我把逻辑学的一些东西自己看了看,觉得确实大有收获。今天我先把逻辑学的一些术语写一下吧,算是我的读书笔记。。。

1.属性与概念
属性:事物的性质与关系。
本质属性:事物独有的、区别于其他事物的属性。
概念:反映事物本质属性的思维形式。
概念的内涵:概念所反映的事物的本质属性。
概念的外延:具有这些属性的所有事物的集合。

2.概念的定义
定义分为属加种差的定义&发生式定义。
属概念与种概念:一个概念的外延是另一个概念的外延的真子集,则外延大的那个概念叫做属概念,外延小的那个概念叫做种概念。 Read moreRead more

无觅相关文章插件,快速提升流量