Skip to content

Posts from the ‘Magical Physics’ Category

18
Feb

希望大家参加[email protected]

LHC(the Large Hadron Collider)中文名称为大型强子对撞机,位于日内瓦附近的欧洲粒子物理研究所(CERN),是所有粒子物理学家翘首以盼的一个项目。原本计划于2007年完工,但由于一些设计失误出现的问题不得不延期,现在还没有竣工。但是它仍然是物理学2008年最值得期待的项目之一,因为LHC的能量足以让我们亲手捕捉到几十年来一直想抓到的“上帝的粒子”——希格斯子,以解释质量的来源,验证标准粒子模型的最重要的预言。同时,LHC也是比较新型的一种加速器,据我了解,以前的加速器加速的往往是电子、反电子,而LHC,像它的名字中表明的一样,加速的是强子(质子就属于强子),新的技术将会带来许多新的发现。不仅仅是验证希格斯子的存在,许许多多的理论将在这里得到验证,许许多多的新发现将在这里诞生。

[email protected]主要由欧洲核子研究中心发起,是在家中帮助LHC进行计算的一个项目。大型强子对撞机的稳定运行需要大量的计算。[email protected] 的 SixTrack 程序能够模拟粒子在大型强子对撞机中运行从而研究其稳定性。它计算校检对撞机中运行的高能粒子束的长期稳定性所必需的数据,使项目负责人能够洞察对撞机将来的运行情况。…

12
Jan

宇宙中神秘的大数

物理学中有很多常数,有一些是带有量纲的,比如光速c,万有引力常数G,电子的电荷量e……还有一部分则是无量纲的常数,比如精细结构常数α(α=e2/(2*ε0*h*c≈1/137。关于其更详细的解释,请看这里)。我们感兴趣的是后者,因为后者的数量是不随单位的任意选取而变化的。比如说我们把米定义为现在的米的1000倍,那么光速c的大小就变了,他在数值上就成了原来的1/1000;但是无量纲的数,比如精细结构常数α,他的数值大小并不会因此而变化。可以说,无量纲的常数实际上是宇宙的某种性质。

关于几个无量纲的常数,存在着某种神秘的关系。
万有引力耦合常数是c1=G*mp2/c=5*10-39
质子和电子间的静电力与万有引力之比是 c2=(e2)/(G*mp*me)=2*1039
宇宙的年龄除以光穿过一个经典电子需要的时间是 c3=(me*c3)/(e2*H)=7*1039
宇宙的总质量除以质子的质量是 c4

29
Dec

有趣的堵火车悖论

当年爱因斯坦(Albert Einstein)提出令人费解的狭义相对论之后,有很多人提出了各种各样的悖论,例如孪生子悖论,在例如今天我要说的堵火车悖论(这个名字是我自己叫的,不知道其他人叫它什么)。这个问题是这个样子的:

未来的某一天,科技高度发达,火车行进速度飞快,足以产生明显的相对论效应,人们也都精通相对论知识。一天,两个盗贼得知有一列载满富翁的火车将通过他们的地盘:一个中间有隧道的山坡,火车将从隧道穿过。已知隧道的长度恰好和火车静止时的长度相等。两个盗贼这样盘算:根据动尺缩短效应,我以我自己为参考系,火车将相对于我高度运动,长度将变短,因此我们可以两个人分别站在隧道的一段,等到火车车身完全在隧道内的时候,两人同时用一块石头堵住隧道两端,把火车封在里面,这样就可以下去抢财物了。富翁们不知从那里得知了倒贼要行动的消息,哈哈大笑,想到:他们不可能成功,根据动尺缩短效应,我以我在的火车为参考系,是山和隧道在高速运动,缩短的应该是隧道,因此我们的火车不可能在某个时刻完全处于隧道内而被封在里面。看来,他们两方说的都有道理,那么问题是:火车究竟能不能被封在隧道内呢?…

8
Dec

机械能守恒需要特殊参考系么?

一个从静止(相对于地面静止,将地面称作S系)开始自由落体的物体满足机械能守恒这是大家闭着眼睛都知道的事情,可是一天我突然想到了一个问题。如果我们换一个参考系,假如说我乘坐着一个电梯,以10m/s的速度(相对于大地)匀速下降,以我为参考系(称作S’系)来看前面这个自由落体的物体,机械能还守恒么?考虑到1秒的时候,物体相对于地面的速度也恰好是10m/s,我们不妨以0到1秒这段时间的状态来研究。一开始0秒的时候,物体相对我(S’系)有10m/s的向上的速度,势能是mgh。在1s钟这个时刻,相对于S’系物体静止了,即动能为零,而高度减小了,即势能也减小了,这样看来机械能不就不守恒了?!

这可能么?一个物理过程,以地球为参考系,机械能就守恒,而换一个相对它匀速运动的新参考系,机械能却不守恒了?强烈的物理思想告诉我,宇宙中不存在特殊参考系,能量守恒在任一惯性系中都一定是成立的。既然地球近似的看成惯性系机械能守恒了,那S’系没有任何理由违反机械能守恒!

问题出在哪里呢?对这个问题,我苦苦思索了两天,终于在一天睡觉的时候悟出来了。原来,问题就出在地球这个“近似”的惯性系上。虽然地球质量极大,在处理一般问题的时候可以认为是很好的惯性系,可是就在现在这个小问题上这个近似出现问题了。请听我慢慢讲解。…

27
Aug

电场线可不可以相交?

电场线可不可以相交?似乎每个学过物理的人都会异口同声地告诉你:当然不会啦!难道这个结论也有问题么?

有问题的。首先我们想一想,在点电荷处是不是发出或终结了多条电场线?呵呵,这是人人都知道的事实,但是大多数人都把它忽略了,电场线是可以交于点电荷处的。

你可能会说,除了这种情况之外,大概电场线就不能像交了吧。不,还有一些特殊情况。

我们回忆一下当初是怎么证明电场线不能相交的。应该是这样说的吧:如果电场线相交,那么交点的电场强度将有多于一个方向,这是没有物理意义的。可是,数学上我们曾经学过这么一个观点,0向量的方向是任意的。也就是说,如果电场线的交点正好是电场强度为0的地方,那么它还是有物理意义的。…

18
Aug

神奇的超导与超流 Superconductor and Superfluid

  低温物理是一个神奇的世界,许多物质到了超低温后都显示出了奇妙的性质。

  超导(Superconductor)应该是大家比较熟悉的,某些金属以及氧化物在低温下会突然展现出超导性质。一旦物体进入了超导态,那么其电阻就突然降为零,而且把所有周围的磁感线都排到物体之外(完全抗磁性),周围的磁通量不发生变化(不会使超导体产生感生电流)。因此,超导体看起来就非常有趣,下面一段视频讲的就是超导。

  视频内容:烟灰缸内的方块是个永久磁体,那个圆片形的东西是个超导体。一开始温度不够低,它显示出正常物质的特性。然后往烟灰缸里倒液氮,给物质降温,圆片就展现出了超导性质。他和磁体总是隔着一段距离(完全抗磁性),而且这个距离保持不变(通过它的磁通量不变)。…