正在看马丁•加德纳的书,忽然间想到了幻方,摆弄了一下居然发现了一个我以前没有看到过的性质,写下来和大家分享一下。
最著名的三阶幻方长这个模样:
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
现在用小键盘输入这9个数,顺序按照492357816这样。在小键盘的对应位置上写上每一个数字是第几个输入的,比如4是第1个输入的,就在小键盘4的位置写下1,9是第二个,在9的位置上应该写上2……这样一来小键盘上就写出了如下阵列:
6 | 7 | 2 |
1 | 5 | 9 |
8 | 3 | 4 |
这居然还是一个幻方,其实就是把上面那种幻方翻转了一下。
我又验证了一种四阶幻方,原幻方如下:
1 | 15 | 14 | 4 |
12 | 6 | 7 | 9 |
8 | 10 | 11 | 15 |
13 | 3 | 2 | 16 |
然后想象有一个4×4的小键盘,上面有1~16,现在同样把小键盘的对应位置上写上每一个数是第几个输入的,仍然得到一个幻方:
13 | 3 | 2 | 16 |
8 | 10 | 11 | 5 |
12 | 6 | 7 | 9 |
1 | 15 | 14 | 4 |
我又验证了一个最普遍的五阶幻方:
17 | 24 | 1 | 8 | 15 |
23 | 5 | 7 | 14 | 16 |
4 | 6 | 13 | 20 | 22 |
10 | 12 | 19 | 21 | 3 |
11 | 18 | 25 | 2 | 9 |
变换之后依然是个幻方:
19 | 15 | 6 | 2 | 23 |
10 | 1 | 22 | 18 | 14 |
21 | 17 | 13 | 9 | 5 |
12 | 8 | 4 | 25 | 16 |
3 | 24 | 20 | 11 | 7 |
目前我就验证了这三个幻方,是否能推广到所有幻方我还不知道。能否证明或否定任何一个幻方经过这样的操作后仍是一个幻方?我最近光去准备物理竞赛了,懒的想了。等比完赛我再好好思考吧。
physixfan
eaglefantasy
Eagle_Fantasy
宇宙的心弦
Traction Theme by The Theme Foundry
Copyright © 2024 physixfan. All rights reserved.
宇宙的心弦 by physixfan is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
你试试最普遍的7阶幻方就不行了
你能把你说的那个不成立的写下来看看么?