Skip to content

Posts tagged ‘近似’

11
Jun

物理学中的近似——关于无穷小量的计算(基础但很重要)

突然发现好长时间没写物理方面的东西了,今天就写写基础的东西吧。关于无穷小量的计算,不知高考考不考,反正竞赛中时极为重要的。这些东西很简单,真得简单得不得了,可是我却是在不断跌打碰壁中自己摸索出来的,走了大段弯路,现在总结出来供大家分享吧。

首先要明确的是,两个无穷小量相除,不等同于0除以0而没有意义,相反,在大量计算中会出现类似的情况,他的结果通常是一个不是无穷大的数。例如,在匀速直线运动中,取一段极小的时间t,Δt→0。在这段时间内位移是Δx,而Δx/Δt=v就是其速度,有着实实在在的意义,有着具体的数值。

有一个重要规则叫做略去高阶无穷小。如果一个项是两个或两个以上的无穷小的乘积,那么这个项相对于其中一个无穷小就是高阶的。例如,Δx2就是比Δx更高阶的无穷小。在一个没有分母的和的形式的多项式中,我们可以略去其中最高阶的无穷小,而不能把全部无穷小给略去,否则就会出现错误。例如,(x+2Δx)2=x2+4xΔx+4(Δx)2= x2+4xΔx。…

20
May

大自然的神秘常数——精细结构常数

大约一年前,有一条科学新闻曾经引起媒体的小小轰动,那就是澳大利亚新南威尔斯大学的科学家通过对来自遥远的类星体的光谱数据的分析,发现宇宙早期的精细结构常数可能比现在的小大约一百万分之七左右。这一发现,如果被进一步证实,将对理论物理的前沿研究产生重大的影响。那么到底什么是精细结构常数?为什么它的改变会如此的轰动效应?

  简单的说,精细结构常数是一个纯数,它没有量纲,通常用希腊字母 α 表示。它的数值约等于1/137,更确切的数值是1/ α =137.03599976,或=0.007297352533(不确定量在最后两位上)。事实上,它可以表示成其它几个更为大家熟知的常数的组合:
α=(e^2)/(2ε0*h*c)

  其中 e 是电子的电荷, ε0 是真空介电常数, h 是普朗克常数, c 是真空中的光速。那么这个常数究竟从何而来,为什么被称为精细结构常数?在物理上又有什么意义呢?这得从光谱慢慢说起。
第一个对氢原子光谱作出成功解释的,是尼尔斯·玻尔于1913年发表的氢原子模型。在这个模型中,玻尔大胆地假设,电子只在一些具有特定能量的轨道上绕核作圆周运动,这些特定的能量称为电子的能级。当电子从一个能级跳到另一个能级时,会吸收或发射与能级差相对应的光量子。玻尔从这两个假设出发,成功地解释了氢原子光谱线的分布规律。…