Skip to content

Recent Articles

4
Jun

批判性地读paper

作者: physixfan

要用批判性的眼光去读paper,即使是引用上千的经典paper和大牛写的paper。这学期两门课的final paper让我对这件事有了更深的体会。

第一门课的final paper是关于重整化群在湍流上的应用的,我当时在网上搜到了一篇 Yakhot & Orszag 1986,引用2000+,在物理领域尤其是湍流方向肯定算是经典paper了。这篇文章做出的结果非常令人激动人心:它不仅可以重现湍流领域最重要的理论成果Kolmogorov Law E(k)=Cε^(2/3)k^(-5/3),还可以计算出这个比例系数C!在这之前C从来都是只能实验或者模拟来得到的,所以能直接从理论出发推导出它的值绝对是个厉害的成果,再加上这篇paper里还计算出来了许多湍流模型里的各种系数,而且全都和实验数据差不多吻合,所以一开始有人甚至都说湍流问题被他们用重整化群给解决了。

花了几天时间去读这篇paper,却有几个地方让我越读越觉得诡异。其中最让我不能理解的是这样一件事:这篇paper为了重现Kolmogorov Law的指数-5/3,需要让一个参数ϵ的值等于4,但是在这篇文章的一个核心的地方却把ϵ给当做小量展开了只保留到一阶…居然可以这样搞?!抱着这些疑问去找我老板,他对我说的第一句话就是:“You need to read this paper critically!” 的确有好些问题是我没有理解到位然后被老板解惑了,不过这个把一个等于4的参数当小量展开的事情,老板也因为是太久以前读的这篇paper了所以没有办法解答。后来从他给我推荐的几篇其他相关paper来看,这个所谓的小量展开的确是被后来的很多人批评诟病的事情,我的看法没错。其实这篇文章还有更根本的物理图像上的问题,我自己水平有限因此没有看出来,在老板的讲解下才恍然大悟。原来所谓的这么多引用的经典paper也有值得讨论和商榷的地方啊!

第二门课的final paper我读的是文小刚老师的弦网凝聚的paper。…

12
May

照镜子为什么是左右颠倒,而不是上下颠倒?

作者: physixfan

这是个虽然简单但是很有意思的问题,以前也曾跟同学讨论过。今天看到在知乎上这个问题的回答里有很多人写的太复杂,所以这里写一个尽可能简洁易懂的回答。为了简洁,这里只讨论最容易引起问题的那种情景,即人站立时正面照镜子。

这个问题的核心在于各个方向的定义,为此需要做一个区分,物理上和感官上的定义其实是有区别的。

物理上,镜子真正颠倒了的方向只有前后,而上下左右都没有颠倒。说的更严谨一点,如果设x为垂直于并指向镜面的方向,y为上,z为右,则镜子的作用是:x变为-x,y变为y,z变为z。

而感官上,对人类来说,前后的定义是眼睛冲着的方向为前,上下是头脚的方向,而左右是什么呢?只能用叉乘来定义了,前叉上为右。镜子里仍然以眼睛冲着的方向为前,故前为-x方向;镜子里头脚的位置没变,所以上下不颠倒,故上仍为y方向;于是通过叉积的定义,右=前叉上=(-x)叉y=-z,于是此时左右就被颠倒了。

最后总结一下就是说,感官上,上下的定义是根据绝对位置的,但左右的定义是相对的,所以最后在人类看来是上下不颠倒而左右颠倒了。…

25
Apr

Turbulence 和 Chaos 的辨析

作者: physixfan

Turbulence 和 Chaos 这两个现象,在一定意义上说是相似的:都是会使系统产生类随机的运动,无法给出方程的完全解析解。但是这又是两个不同的词,在其各自的语境下使用着相当不同的研究方法去研究。于是很长时间我都有个疑问,turbulence和chaos到底是怎样的关系?今天跟一个老师讨论了一下,似乎他的解释相当靠谱。

Chaos的定义是,在相空间中两个最初靠的很近的轨线,其距离会随着时间推移指数增长。于是产生Chaos的系统首先得有一个相空间,这要求系统有有限多个自由度。然而最初产生Turbulence的方程Navier-Stokes方程本质上则是场方程,速度场\(\mathbf{u}(\mathbf{x},t)\)是空间坐标的函数,空间的连续性就意味着这是个无穷多自由度的问题。无穷多自由度和有限个自由度的问题还是有着本质的区别的,这也就是为什么在研究Turbulence的时候不怎么讨论相空间啊吸引子啊Lyapunov指数啊什么的原因了。当然,如果引入其他假设来建立Model化简Navier-Stokes方程的话,它也可以用Chaos理论来研究的,比如最初让大家开始讨论Chaos的Lorenz方程组就是这么来的。更提纲挈领地看这个问题的话就是:常微分方程组可以用Chaos理论来研究,但是产生Turbulence的系统来自于偏微分方程,而偏微分方程的一般理论仍然是一个发展尚未成熟的数学领域,因此人们对Turbulence就没有很好的理论去使用了。

 …

23
Apr

受控核聚变的难点在哪里?

作者: physixfan

//本文是我在知乎上的回答《什么是可控核聚变?实现它的难点是什么?》。

宏观上来看,难点就是同时实现高温高密度和长约束时间(Lawson criterion)。因为自己是聚变方向的PhD,所以我想我可以谈一些比通常见到的科普更多的内容。下文主要针对托卡马克方案(即用磁场约束等离子体以实现聚变的方案),贴自我自己在知乎上对这个问题的回答。

第一方面的难点是物理理论上的。虽然等离子体的运动无非就是麦克斯韦方程组就可以完全描述的,连量子力学都用不到,但是因为包含的粒子数目多,就会遇到本质的困难,此所谓 “More is different”。正如在流体力学里,我们虽然知道基本方程就是Navier-Stokes方程,但是其产生的湍流现象却是物理上几百年来都攻不下来的大山。等离子体同样会产生等离子体湍流,因为有外磁场的存在甚至是比流体湍流更复杂一些。于是在物理上,我们就没有办法找到第一性原理出发找到一个简洁的模型去很好地预测等离子体行为。我们现在所能做的,很多时候就是像流体湍流的研究那样,构建一些更加偏唯像一点的模型,同时发展数值模拟的技术。

第二方面的难点是物理实验上的。即使没有第一性原理出发的理论,很多时候唯像模型也可以非常实用,比如说现在流体湍流的模型就可以在工程上很实用。但是等离子体实验的数据可并不像流体那么好获得。从理论上我们可以知道,托卡马克里的高温高密度等离子体会有非常多的不稳定性,如果伸进去一根探针进等离子体中心,那立刻就会激发起不稳定性于是整个等离子体就会分崩离析。基于这个原因,实验观测的手段就会很受限制。这也就是为什么我们不说“等离子体测量”一词,而是使用“等离子体诊断”,因为这的确就跟诊断病人的病情很像。…

18
Feb

人类首次实现能量增益大于1的受控核聚变(惯性约束)

作者: physixfan

Nature于2014年2月12日发表的一篇文章《Fuel gain exceeding unity in an inertially confined fusion implosion》宣布NIF(美国国家点火装置)用惯性约束聚变的方法首次实现了受控核聚变能量增益大于1的实验,其意为聚变释放出的能量大于输入到靶丸的激光能量,实属受控核聚变道路上的一个重大里程碑!

作为聚变方向的PhD,真心为这个消息感到激动人心,同时想稍微科普一下其中的知识,让行业外的人也了解了解。

受控核聚变能源一直以来就是人类梦寐以求的终极能源。聚变能早在第一颗氢弹爆炸的时候就已经被人类所释放,然而氢弹的本质却决定了它无法作为可控的能源:氢弹爆炸的条件太苛刻,于是只能用原子弹来引爆,而原子弹想要爆炸,浓缩铀的质量就必须大于一个临界值,因此氢弹的爆炸是一定要一次性放出巨大能量的,破坏力实在太大,无法作为能源使用。因此,之后的几十年里,人们就一直在寻求让聚变能每次少量释放的途径。然而,聚变点火的条件是,温度、密度、约束时间这三个量的乘积需要大于一个数值(劳森判据),显而易见的一点是,温度密度越高就约难以约束,因此三者同时提高是一个极其困难的任务。

目前的主流解决方案有两种:磁约束和惯性约束。…

12
Dec

倒立单摆的稳定性与Ponderomotive Force

作者: physixfan

众所周知,单摆有两个平衡点,一个是垂直向下的稳定平衡点,另一个是垂直向上的不稳定平衡点。然而,只要在单摆的悬挂点处施加一定条件的振动,无需任何反馈系统,就可以让向上的平衡点也变成稳定的!下面这个视频就演示了这一个神奇的现象。(原视频地址为http://www.youtube.com/watch?v=5oGYCxkgnHQ 在墙外…)

这个现象要如何解释呢?一定要注意,这个悬挂点的振动没有依赖任何反馈装置,跟很多工科院系做的横向移动的小车上的倒摆有着本质的不同。显然不是随便一个振动都能稳定住倒立单摆,那么这个振动到底需要满足怎样的条件才可以呢?这个问题的关键,叫做Ponderomotive Force,中文翻译是“有质动力”。中文世界里对Ponderomotive Force的涉及是如此至少,以至于我这个学了四年本科物理的人都完全没有听说过它的中文版本,因此我决定写此文科普一下。

首先给出一个直观而不定量的理解。倒立单摆的情形可以直观地看作一个小球在一个碗里运动,碗的形状即势能:…