Skip to content

Posts tagged ‘证明’

31
Dec

一道难题巧解

这道题来自孙丕业在福州上的课。当时老师出了这道题,等了半个小时无人能给出完整的解答,大家都讨论的焦头烂额却也没什么结果。这时,老师开始讲题了,只一句话,大家就全明白了,接着全体鼓掌!当时孙丕业给我看这道题,我也想了半天没有任何思路,结果他又是一句话把我搞懂!
这道题是这样的。n为奇数,用n-3条不交叉的直线可以把正n边形分成n-2个三角形,求证:有且仅有一个三角形是锐角三角形。

请先认真思考再看下面的解答。…

24
Aug

一个超级赖皮的数学证明方法——例证法

今天看到《数学家的眼光》(张景中著)写到了一个巨赖皮的数学证明方法,叫例证法,看完我都惊得不行了,就写到这里来和大家分享一下。
为了说明例证法,我们举一个简单的例子。试证明:(x+1)(x-1)=x^2-1。我们假设我们不会做(这不是在贬低你的智商阿)。现在我就讲一个所有人都肯定能学会的方法,用例证法来证明!

证明:令x=1代入原式,发现等式成立。
令x=2代入原式,发现等式成立。
令x=3代入原式,发现等式成立。
所以原式恒成立。

你看了可能会狂笑不止,有种想揍我的冲动,这什么东西,举了3个例子就说证明了原式?证明等式成立可必须是所有x都满足才行啊!可是,且慢,我可以告诉你,这样证明是严谨的。不信就听我仔细分析。…

22
Aug

一个有趣的级数

估计有不少人知道这样一个公式,1-1/3+1/5-1/7+1/9-…=π/4

我很小的时候就见过这个,貌似叫莱布尼茨公式,觉得相当有意思,一些自然数的加减乘除居然出现了π!之后我对这个公式思考了好长时间,总是想不出来怎么来证明。我一直把这个问题记在心里,期盼着那一天能找到他的证法。

我曾经专门找过微积分的书和有关级数的数,遗憾的是,这么经典的一个无穷级数求和居然都没有写到。我近日在数学吧问了一下,好象没有初等数学的证明,有人贴出来了一个不过我没看明白。
有意思的是,今天在读《费曼物理学讲义》有关谐波的章节时,居然看到了这个等式的证法!呵呵,我都惊喜得不行了,居然在经典物理书里面看到了有意思的数学证明!我想把这个证法贴出来,供大家欣赏,相当精彩啊,不过没学过微积分的就不用看了。…

3
Jun

一张图证明著名等式


如图,从内到外各圈正方形的边长依次是1,2,3,4……通过面积的两种表达形式,就可以证明结论中的著名等式!
解释一下:第一个算式是把面积一圈一圈加起来,第二个是总边长的平方。…

18
May

证明:三角形的质心是三条中线交点

这个命题肯定是成立的,没有人敢怀疑。但是,我就想不明白为什么会是这样。并不是画一条线,只要把面积平分了,质心就一定在这条线上。因为把它吊起来,两边虽然重力相同,可力臂未必相同。

我曾尝试过多种证法。比如定义法,根本无从研究;负质量法,完全无法下手;积分法,太繁琐而且变数太多不好操作;巴普斯定理,也显得不能胜任……怎么办?

我问了我们学校最牛的物理竞赛教练王林老师,他考虑了一会,先做了几次失败的尝试,后来突然恍然大悟,想到了一个绝妙的好方法!…

1
May

用逻辑学规范物理学(三)

也许我是受费曼的熏陶太深,也许我就是思想顽固保守,我总相信宇宙有一套自然公理,而通过这套公里就可以完全用逻辑学的推理,把所有宇宙定律全部推出来。我知道这个问题不是我现在所能研究的了的,但我还是太狂热。那么,就让我冒昧的先把最基础的牛顿时代的定律加以整理吧。

至于自然界的公理是什么,我还是要说我受费曼的影响太深。费曼认为,宇宙中最基本的两个原理应该是对称守恒和最小作用量原理。我深表同意。这两个原理,我自认为无可厚非的成为宇宙中的最基本公理。关于对称守恒的原理,我还是想选择Noether定理(诺特尔定理)作为基本公理,该定律内容是这样的:宇宙中对称与守恒是一一对应的(它们之间有着某种妙不可言的神秘关系)。例如:空间平移对称对应着动量守恒,时间平移对称对应着动量守恒,空间方向对称对应着角动量守恒,规范性变换对称对应着电荷量守恒,左右对称对应着宇称守恒(这组守恒似乎是破缺了),等等。

有了这组公理,我现在开始推。

首先,考察一些事物的属性。作为空间,他有几个固有性质:平移对称,各向同性,连续性,无限性,有三维(比较保守的观念)等。(引用自:《科学与假设》,彭加勒著)作为时间,他也应该有几个固有性质:平移对称,反演对称(似乎是部分破缺的)等。在关于时间的问题上,我不敢多讨论,也不想多讨论,因为连最牛的科学家都说不清道不明。

因此,通过Noether定理,我就得出了以下几条定理:…